Design, Synthesis, In Vitro, and In Vivo Characterization of Phenylpiperazines and Pyridinylpiperazines as Potent and Selective Antagonists of the Melanocortin-4 Receptor

Joe A. Tran, Wanlong Jiang, Fabio C. Tucci, ${ }^{\dagger}$ Beth A. Fleck, Jenny Wen, Yang Sai, Ajay Madan, Ta Kung Chen, Stacy Markison, Alan C. Foster, Sam R. Hoare, Daniel Marks, John Harman, Caroline W. Chen, Melissa Arellano, Dragan Marinkovic, Haig Bozigian, John Saunders, ${ }^{*}$ and Chen Chen*
Department of Medicinal Chemistry, Department of Pharmacology, Department of Neuroscience and Department of Preclinical Development, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, California 92130

Received September 12, 2007

Abstract

Benzylamine and pyridinemethylamine derivatives were synthesized and characterized as potent and selective antagonists of the melanocortin- 4 receptor (MC4R). These compounds were also profiled in rodents for their pharmacokinetic properties. Two compounds with diversified profiles in chemical structure, pharmacological activities, and pharmacokinetics, 10 and $\mathbf{1 2 b}$, showed efficacy in an established murine cachexia model. For example, 12b had a K_{i} value of 3.4 nM at MC4R, was more than 200-fold selective over MC3R, and had a good pharmacokinetic profile in mice, including high brain penetration. Moreover, 12b was able to stimulate food intake in the tumor-bearing mice and reverse their lean body mass loss. Our results provided further evidence that a potent and selective MC4R antagonist with appropriate pharmacokinetic properties might potentially be useful for the treatment of cancer cachexia.

Introduction

Cachexia is a condition characterized by weight loss, wasting of muscle, loss of appetite, and general debility that accompanies many chronic diseases, affects various patient populations, including those with cancer, and is estimated to be responsible for over 20% of all cancer-related deaths. ${ }^{1}$ Cancer cachexia significantly impairs quality of life and response to antineoplastic therapies and increases morbidity and mortality of cancer patients. Most current therapeutic strategies to counteract cancer cachexia have proven to be only partially effective. ${ }^{2}$ In the past decade, research into the processes leading to cachexia have provided ideas for more effective therapeutic intervention that have been attempted pharmacologically with encouraging results in animal models and preliminary clinical trials. While recent studies have linked cancer cachexia to endocannabinoid, ${ }^{3}$ ghrelin, ${ }^{4}$ and other biological systems associated with appetite stimulation and food intake, one key center that is likely involved in the propagation of symptoms of cachexia is the melanocortin system in the hypothalamus and brainstem. ${ }^{5}$

The melanocortin system consists of five cell surface receptors that belong to the class A G-protein-coupled receptor superfamily. ${ }^{6}$ These receptors are activated by the family of melanocytestimulating hormone peptide agonists produced from the posttranslational processing of pro-opiomelanocortin (POMC^{a}), including $\alpha-, \beta$-, and $\gamma-\mathrm{MSH}$ and adrenocorticotropin hormone (ACTH). ${ }^{7}$ In addition, these receptors are also regulated by the endogenous antagonists agouti-protein and agouti-related protein (AgRP). ${ }^{8}$ The melanocortin-4 receptor (MC4R) ${ }^{a}$ plays a very important role in

[^0]feeding behavior and energy homeostasis in animals and humans. ${ }^{9}$ MC4 receptors are widely expressed in the brain, and MC4R mutations that impair receptor function have been associated with binge eating and obesity in humans. ${ }^{10,11}$ In addition, many studies have demonstrated that MC4R agonists suppress food intake and reduce body weight in animals. ${ }^{12}$
In contrast, recent studies have shown that MC4R antagonists promote food intake and increase weight gain in animals. ${ }^{13}$ Moreover, evidence suggests that cachexia brought about by a variety of illnesses can be attenuated or reversed by blocking MC4R activation within the central nervous system. ${ }^{14}$ For example, Wisse and co-workers demonstrate that the peptide MC4R antagonist Ac-Nle(4)-c[Asp(5)-2'-Nal(7)-Lys(10)]- $\alpha-$ $\mathrm{MSH}(4-10)-\mathrm{NH}_{2}$ (SHU9119) ${ }^{15}$ reverses body weight loss in mice after intracerebroventricular administration. ${ }^{16}$ This effect, however, is diminished in MC4R knock out mice, ${ }^{17}$ demonstrating MC4R involvement. Central infusion of $\operatorname{AgRP}(83-132)$ also prevents cachexia-related symptoms induced by radiation and colon-26 tumors in mice. ${ }^{18}$

While potent peptide antagonists for the MC4 receptor have been known for years, small nonpeptide molecules that antagonize the receptor were only recently discovered. ${ }^{19}$ One advantage of nonpeptide molecules is the possibility of delineating pharmacological activity in animals without intracerebroventrical injection if the molecules achieve sufficient brain penetration after peripheral administration. For example, a 2-phenylimidazoline 1 (ML00253764, Figure 1) is a functional MC4R antagonist $\left(\mathrm{IC}_{50}=103 \mathrm{nM}\right)$ with poor selectivity versus MC3R, a receptor subtype that is also believed to have a role in feeding regulation ${ }^{20}$ and has demonstrated efficacy in a cachexia model via subcutaneous administration. ${ }^{21,22}$ Additionally, we have shown that a β-alanine-($2,4-\mathrm{Cl}$) phenylalanine dipeptide derivative 2 is a potent functional MC4R antagonist with negligible affinity at MC3R. ${ }^{23}$ Intraperitoneal administration of 2 effectively stimulates daytime (satiated) food intake and decreases basal metabolic rate in normal animals. Furthermore, this compound attenuates cachexia and preserves lean body mass in a murine cancer model. ${ }^{24}$ These data provide evidence for

1

2

5

Figure 1. Chemical structures of some small molecule MC4R antagonists.
the potential utility of small molecule MC4R antagonists, particularly in the treatment of cancer cachexia. ${ }^{25}$

Several MC4R antagonists from different chemical classes have been reported. For example, the structure-activity relationship of bispiperazine derivatives exemplified by $\mathbf{3}$ has been extensively studied. ${ }^{26,27}$ A series of acylguanidines exemplified by $\mathbf{4}$ are reported as highly potent MC4R antagonists with brain penetration in rodents. ${ }^{28}$ Very recently, a series of benzimidazoles are described as potent and selective MC4R antagonists. ${ }^{29}$ We have previously reported the discovery of a series of piperazinebenzylamines such as $5\left(K_{\mathrm{i}}=75 \mathrm{nM}\right)$ as MC4R antagonists. ${ }^{30}$ By using 5 as a lead, we started a research effort to improve the MC4R antagonist properties associated with this compound in several categories including potency, metabolism, and pharmacokinetics. Here we report the design, synthesis, and in vitro and in vivo characterization of several compounds based on this initial lead. Among them, $N-(1 S-[2-\{4-[(2 R)$-methyl-3-(4-chlorophenyl)propionyl]-1-piperazinyl\}-5-chlorophenyl]-3-methylbutyl)-3-(dimethylamino)propionamide (12b) was identified as potent and selective at the MC4 receptor. It also exhibited suitable pharmacokinetic properties for further evaluation and demonstrated anticachectic activity in a murine cachexia model.

Chemistry

The target benzylamine compounds were synthesized from the protected piperazinebenzylamines $\mathbf{6},{ }^{31}$ as shown in Scheme 1. A coupling reaction of the free amine derived from $\mathbf{6 a}$ with 3-(2,4-dichlorophenyl)propionic acid afforded the amides $\mathbf{5}$ after deprotection with HCl in methanol, which was coupled with N-Boc-glycine to give 11 after a TFA treatment. ${ }^{32}$ Similarly, 6a was also coupled with 2-methyl-3-(2-methoxy-4-chlorophenyl)propionic acid to provide $7,{ }^{30}$ and compound $\mathbf{8}$ was obtained from $\mathbf{6 b}$ and $2 R$-methyl-3-(4-chlorophenyl)propionic acid. Reaction of $\mathbf{8}$ with 3 -(N, N-dimethylamino)propionic acid under coupling conditions gave the amide 12a. Compound 12b was prepared using the same procedure from $6 \mathbf{c c}$. Compound 9 was synthesized from 6d by the following sequence. A coupling reaction of the free amine of $\mathbf{6 d}$ with N-Boc-d-($2,4-\mathrm{Cl}) \mathrm{Phe-OH}$ provided an amide that was selectively Boc-deprotected with TFA and reacted with succinaldehydic acid under reductive conditions, followed by a cyclization promoted by EDC under coupling conditions to provide the desired product after deprotection with HCl in methanol. ${ }^{33}$ Reductive alkylation of 9 with (2-oxoethyl)carbamic acid tert-butyl ester afforded the diamine

10 after Boc-deprotection. ${ }^{33}$ Compound $\mathbf{1 3}$ was synthesized from $\mathbf{6 b}$ by a sequence for 9 , followed by a coupling reaction with 3-(dimethylamino)propionic acid.

The optically pure $2 R$-methyl-3-(4-chlorophenyl)propionic acid 16a and $2 R$-methyl-3-(2,4-dichlorophenyl)propionic acid 16b were synthesized according to Scheme 2. Stereoselective alkylation of (S)-3-propionyl-4-benzyloxazolidine $\mathbf{1 4}$ with 4-chlorobenzyl or 2,4-dichlorobenzyl bromide, followed by hydrolyzis of the diastereomer $\mathbf{1 5}$ promoted by hydrogen peroxide under basic conditions afforded the desired acid 16a or 16b in good yield. ${ }^{34}$

The synthesis of the pyridine derivatives $\mathbf{2 0}-\mathbf{2 3}$ is outlined in Scheme 3. 2-Bromo-3-pyridylcarboxaldehyde 17a was obtained by a formylation of 2-bromopyridine, which was achieved by quenching the carbanion, formed by LDA at $-78^{\circ} \mathrm{C}$ in THF, with DMF in 19% yield. ${ }^{35}$ 2-Chloro-6-methyl-3-pyridylcarboxaldehyde 17b was obtained by the reduction of 2-chloro-3-cyano-6-methylpyridine with Dibal-H in toluene at -10 to 0 ${ }^{\circ} \mathrm{C}$ in 53% yield. These aldehydes were condensed with (S) -tert-butanesulfinamide to the corresponding pyridylmethylidene sulfinylamides $S \mathbf{- 1 8 a} \mathbf{- b}$. Reactions of $S \mathbf{- 1 8}$ with isobutyllithium afforded the adducts $R \mathbf{- 1 9 a}, \mathbf{b}$ using conditions similar to those for $\mathbf{6 a}-\mathbf{d}$. Unexpectedly, the stereoselectivity of this reaction was reversed from the benzene analogs $\mathbf{6}$, and the major stereoisomer had an R-configuration at the newly formed chiral center. The stereochemistry of $R \mathbf{- 1 9 b}$ was confirmed by X-ray crystal structure determination (Figure 2). The reason for this reversed stereoselectivity was possibly caused by the participation of the pyridine nitrogen in the chelating process. ${ }^{31}$ The corresponding S-19a was then synthesized from (R)-tertbutanesulfinamide using the same procedure. After a TFA treatment of R-19a, the resultant amine intermediate was coupled with 2,4-dichlorophenylpropionic acid to give R-20a after an $\mathrm{HCl} / \mathrm{MeOH}$ treatment. Compound R-20b was obtained from R-19a and 2-methyl-3-(2,4-dichlorophenyl)propionic acid. Similarly, a coupling reaction of the free amine derived from $R-\mathbf{1 9 b}$ with ($2 R$)-methyl-3-(2,4-dichlorophenyl)propionic acid provided the amide $R-21$. Compound $R-20 \mathrm{~b}$ was further derivatized to $R-22$ by coupling with glycine, while $R-21$ was converted to the N, N-dimethylpropionamide R-23. The S-isomers, S-20a and S-22, were also synthesized from S - 19a for comparison.

Structure-Activity Relationship

The synthesized compounds were tested in a binding assay using membranes from HEK293 cells stably expressing the

Scheme $\mathbf{1}^{a}$

7
$a, d, c \uparrow$

5

a, b, c

$6 d: X=6-F$
$6 d: X=6-F$

${ }^{a}$ Reagents and conditions: (a) TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 1 h ; (b) $2,4-\mathrm{ClC}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH} / \mathrm{EDC} / \mathrm{HOBt} / \mathrm{NaHCO}_{3} / \mathrm{DMF} / \mathrm{CH}_{2} \mathrm{Cl} 2$, r.t., 16 h ; (c) $\mathrm{HCl} / \mathrm{MeOH}$, r.t., 1 h ; (d) $2-\mathrm{MeO}, 4-\mathrm{ClC}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{CHMeCOOH} / \mathrm{EDC} / \mathrm{HOBt} / \mathrm{NaHCO}_{3} / \mathrm{DMF}^{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 16 h ; (e) R - $\left(4-\mathrm{ClC}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{2} \mathrm{CHMeCOOH} / \mathrm{EDC} / \mathrm{HOBt} / \mathrm{NaHCO} 3 / \mathrm{DMF} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 16 h ; (f) (i) N-Boc-d-(2,4-Cl)Phe-OH/EDC/HOBt/ $\mathrm{NaHCO}_{3} / \mathrm{DMF}^{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 16 h; (ii) $\mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 1 h ; (iii) $\mathrm{OCHCH} \mathrm{CH}_{2} \mathrm{COOH} /$ $\mathrm{NaBH}(\mathrm{OAc})_{3} / \mathrm{HOAc} / \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$, r.t., 24 h ; (iv) $\mathrm{EDC} / \mathrm{HOBt} / \mathrm{NaHCO}_{3} / \mathrm{DMF}^{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 16 h ; (g) N - $\mathrm{Boc}-\mathrm{GlyOH} / \mathrm{EDC} / \mathrm{HOBt} / \mathrm{NaHCO} 3 / \mathrm{DMF} / \mathrm{CH}_{2} \mathrm{Cl} 2$, r.t., 16 h ; (h) $\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{COOH} / \mathrm{EDC} / \mathrm{HOBt} / \mathrm{NaHCO}_{3} / \mathrm{DMF}$, r.t., 16 h ; (i) N - $\mathrm{Boc}-\mathrm{NHCH}_{2} \mathrm{CHO} / \mathrm{NaBH}(\mathrm{OAc})_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ r.t. 14 h.

Scheme $\mathbf{2}^{a}$

${ }^{a}$ Reagents and conditions: (a) NaHMDS/THF, $-70^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then 2-Y-4- $\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Br},-78{ }^{\circ} \mathrm{C}$ to r.t., 6 h ; (b) $\mathrm{LiOH} / \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to r.t., 1.5 h .
human melanocortin-4 receptor as previously described, ${ }^{36}$ and the results are depicted in Table 1. Compounds 7, 8, 10-13 and $R-\mathbf{2 3}$ were also tested in a whole cell cAMP assay to study their functional antagonist activity. Selectivity profiles of these compounds at the other melanocortin receptor subtypes were determined in binding assays, and the results are summarized in Table 2.
While the benzylamine 5 displayed a K_{i} of 75 nM , its glycine derivative $\mathbf{1 1}\left(K_{\mathrm{i}}=19 \mathrm{nM}\right)$ exhibited increased potency. The 2-methyl-3-(2-methoxy-4-chlorophenyl)propionyl analog 7 (K_{i} $=14 \mathrm{nM})$ was over 5 -fold better than 5 in binding affinity. Incorporating a N, N-dimethylpropionyl group at the benzyl nitrogen of $8\left(K_{\mathrm{i}}=25 \mathrm{nM}\right)$ improved the potency by about 7-fold (12a, $\left.K_{\mathrm{i}}=3.7 \mathrm{nM}\right)$. Replacing the methyl group of 12a with a chlorine gave an analog with the similar potency (12b, $\left.K_{\mathrm{i}}=3.4 \mathrm{nM}\right)$. The pyrrolidinone 9 possessed a K_{i} value of 9.7 nM , which was increased by 10 -fold when an aminoethyl group was attached (10, $\left.K_{\mathrm{i}}=0.9 \mathrm{nM}\right)$. In comparison, the $N, N-$ dimethylaminopropionamide $13\left(K_{\mathrm{i}}=0.6 \mathrm{nM}\right)$ also exhibited subnanomolar binding affinity.

For the pyridine compounds 20a, the R-configured compound R-20a ($K_{\mathrm{i}}=260 \mathrm{nM}$) was more potent than its S-isomer (S 20a, $K_{\mathrm{i}}=890 \mathrm{nM}$), the opposite of what was seen in the benzylamine series. ${ }^{30}$ Incorporating a 2 -methyl moiety at the 3-(2,4-dichlorophenyl)propionyl group of R-20a resulted in a more potent molecule ($R \mathbf{- 2 0 b}, K_{\mathrm{i}}=36 \mathrm{nM}$). Adding a glycine to R-20b improved its potency by 6 -fold $\left(R-22, K_{\mathrm{i}}=6 \mathrm{nM}\right)$, parallel to the result of benzylamines 5 and 11. Incorporating a methyl group at the 6-position of the pyridine R-20b had little effect on its binding affinity ($R-21, K_{\mathrm{i}}=44 \mathrm{nM}$). An almost 20-fold increase in binding affinity from R-21 was observed for the N, N-dimethylaminopropionamide derivative ($R-23, K_{\mathrm{i}}$ $=2.5 \mathrm{nM}$). The potencies of the pyridine derivatives $R-\mathbf{2 0}-\mathbf{2 3}$ were quite similar to those of the phenyl analogs ($\mathbf{5}$ and 7-13). In the solid state, the piperazine plane was orthogonal to the pyridine ring in 2-piperazinepyridine $R-\mathbf{1 9 b}$ reflected by its X-ray crystal structure (Figure 2). This conformational feature is also observed for benzene analogs such as Boc- $\mathbf{6 a},{ }^{31}$ although the overlay of these two X-ray structures indicates that the sulfinylamides point in different directions (Figure 3).

Most of these compounds ($\mathbf{7}, \mathbf{8}, \mathbf{1 0}-\mathbf{1 3}$ and $R-\mathbf{2 3}$) were very selective at MC4R over the other melanocortin receptor subtypes (Table 2). For example, the pyridine compound $R-\mathbf{2 3}$ displayed at least 500 -fold selectivity over the other receptor subtypes. The only exception was 7 , which only exhibited 6 -fold selectivity at the MC5 receptor compared to MC4R. All of the compounds tested in the functional agonist assay showed no significant stimulation of cAMP accumulation via MC4R at up to $10 \mu \mathrm{M}$ (data not shown). In the functional antagonist assay, all compounds displayed dose-dependent inhibition of $\alpha-\mathrm{MSH}-$ stimulated cAMP accumulation with various potencies (Table 2). The functional IC_{50} values were typically 20 - to 30 -fold

Scheme 3^{a}

${ }^{a}$ Reagents and conditions: (a) DMF/DIEA/4-Boc-piperazine, $100^{\circ} \mathrm{C}, 8 \mathrm{~h}$; (b) S - $\mathrm{Me}_{3} \mathrm{CSONH}_{2} / \mathrm{Ti}(\mathrm{OEt}) 4 / \mathrm{THF}$, r.t., 8 h ; (c) (i) $\mathrm{Me} 3 \mathrm{Al} / \mathrm{THF},-40{ }^{\circ} \mathrm{C}$, 20 min ; (ii) i-BuLi/THF, $-78{ }^{\circ} \mathrm{C}, 5-8 \mathrm{~h}$; (d) (i) TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 1 h ; (ii) $\left(2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{R}^{\prime}\right) \mathrm{COOH} / \mathrm{EDC} / \mathrm{HOBt} / \mathrm{CH}_{2} \mathrm{Cl} 2$, r.t., 8 h ; (e) N - $\mathrm{Boc}-\mathrm{Gly}-\mathrm{OH} / \mathrm{EDC} /$ $\mathrm{HOBt} / \mathrm{NaHCO}_{3} / \mathrm{DMF} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 8 h ; (ii) $\mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 1 h ; (f) $\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{COOH} / \mathrm{EDC} / \mathrm{HOBt} / \mathrm{NaHCO} 3 / \mathrm{DMF}^{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 8 h .

Figure 2. X-ray crystal structure of $R \mathbf{- 1 9 b}$.
Table 1. Binding Affinity of 5, 7-13, and 20-23 at $h \mathrm{MC}_{\mathbf{2}}{ }^{a}$

compound	$K_{\mathrm{i}}(\mathrm{nM})$	compound	$K_{\mathrm{i}}(\mathrm{nM})$
$\mathbf{5}$	75	$\mathbf{1 3}$	0.6
$\mathbf{7}$	14	$R-\mathbf{2 0 a}$	260
$\mathbf{8}$	25	S-20a	890
$\mathbf{9}$	9.7	$R-\mathbf{- 2 0 b}$	36
$\mathbf{1 0}$	0.9	$R-\mathbf{2 1}$	44
$\mathbf{1 1}$	19	$R-\mathbf{- 2 2}$	6.0
$\mathbf{1 2 a}$	3.7	$\mathrm{~S} \mathbf{- 2 2}$	39
$\mathbf{1 2 b}$	3.4	$R-\mathbf{2 3}$	2.5

${ }^{a}$ Data are the average of two or more independent measurements.
higher than the binding affinity K_{i} values, possibly due to the different assay conditions. However, compounds 7, 11, and 12b exhibited a much larger separation between their K_{i} and IC_{50} values. It is worth noting that these compounds were highly lipophilic, with measured $\log \mathrm{D}$ values of >3.9 (Table 2).

Pharmacokinetics

Compounds 7, 8, 10, 11, 12b, and R - 22 were studied in mice for their pharmacokinetic properties (Table 3). After an intravenous (i.v.) injection at a $5 \mathrm{mg} / \mathrm{kg}$ dose, the benzylamine 7 displayed a high plasma clearance ($\mathrm{CL}=62.3 \mathrm{~mL} / \mathrm{min} . \mathrm{kg}$). Despite its high volume of distribution ($V_{\mathrm{d}}=10.3 \mathrm{~L} / \mathrm{kg}$), 7 had a short half-life ($t_{1 / 2}=1.9 \mathrm{~h}$), indicative of fast elimination in this species. A concentration of $735 \mathrm{ng} / \mathrm{g}$ was detected in the brain at the 1 h time point post-dosing, indicating high brain penetration. A brain/plasma (b/p) ratio of 2.3 was calculated at this time point. The absorption of this compound was very fast after a $10 \mathrm{mg} / \mathrm{kg}$ oral gavage (p.o.), and a maximal concentration

Table 2. Binding Affinity ($K_{\mathrm{i}}, \mathrm{nM}$) at the Melanocortin Receptor Subtypes, ${ }^{a}$ Functional Activity at MC4R and Measured LogD Values of Some MC4R Antagonists

cmpd	binding affinity ($K_{\mathrm{i}}, \mathrm{nM}$)				$\frac{\mathrm{MC} 4 \mathrm{R} \text { function }}{\mathrm{IC}_{50}{ }^{c}(\mathrm{nM})}$	$\underline{L o g}{ }^{\text {d }}$
	$\mathrm{MC1}{ }^{\text {b }}$	MC3	MC4	MC5		
7	(23\%)	320	14	86	1700	4.5
8	3100	1300	25	1000	570	3.0
10	(38\%)	750	0.9	850	21	1.8
11	(18\%)	1200	19	500	1300	4.5
12a	(34\%)	2800	3.7	710	160	2.4
12b	(20\%)	710	3.4	600	930	3.9
13	8400	820	0.6	520	19	3.9
R-23	6400	3300	2.5	1200	49	3.3

${ }^{a}$ Data are the average of two or more independent measurements. ${ }^{b}$ The percentage inhibition at $10 \mu \mathrm{M}$ concentration is indicated in parenthesis. ${ }^{c}$ Dose-dependent inhibition of $\alpha-\mathrm{MSH}$-stimulated cAMP production via MC4R. ${ }^{d}$ The logD value was measured using a shake-flake method.

Figure 3. Overlay of pyridylpiperazine $R-\mathbf{1 9}$ and phenylpiperazine $\mathbf{6 a}$.
$\left(C_{\max }=99 \mathrm{ng} / \mathrm{mL}\right)$ appeared at $0.25 \mathrm{~h}\left(T_{\max }\right)$, resulting in an area under curve (AUC) of $249 \mathrm{ng} / \mathrm{mL} \cdot \mathrm{h}$ and a low oral bioavailability $(F \%=8.6)$. In comparison, the benzylamine 8 had a moderate plasma clearance ($\mathrm{CL}=33.3 \mathrm{~mL} / \mathrm{min} \cdot \mathrm{kg}$) and a high V_{d} value of $10.2 \mathrm{~L} / \mathrm{kg}$, resulting in a $t_{1 / 2}$ of 3.5 h . The lipophilicity of $\mathbf{8}(\log \mathrm{D}=3.0)$ was significantly lower than that of $7(\log \mathrm{D}=4.5)$, which might contribute to its lower plasma clearance. The brain penetration of $\mathbf{8}$ was high ($\mathrm{b} / \mathrm{p}=$ 2.9 and 1.4 at 1 h and 4 h , respectively) and its oral bioavailability increased to 34% compared to 7 . The less

Table 3. Pharmacokinetic Profiles of MC4R Antagonists in CD-1 Mice ${ }^{a}$

cmpd	CL (mL/min $\cdot \mathrm{kg}$)	$V_{\text {d }}(\mathrm{L} / \mathrm{kg})$	$t_{1 / 2}$ (h)	$C_{\mathrm{b}}(\mathrm{ng} / \mathrm{g})$ at $1,4 \mathrm{~h}$	b / p ratio at $1,4 \mathrm{~h}$	$T_{\text {max }}(\mathrm{h})$	$C_{\text {max }}(\mathrm{ng} / \mathrm{mL})$	oral AUC (ng/mL.h)	$F(\%)$
7	62.3	10.3	1.9	735, 122	2.3, 1.9	0.25	99	249	8.6
8	33.3	10.2	3.5	940, 330	2.9, 1.4	0.5	267	1762	34.4
10	15	13	10	63, 53	$0.14,0.23$	2.0	552	1950	19.5
11	26.9	8.8	3.8	43, 33	0.08, 0.17	2.0	115	687	11.2
12b	36	11	3.5	800, 177	2.4, 2.2	0.5	132	1160	23.0
R-22	37.4	16.8	5.2	35, 14	0.07, 0.15	0.5	288	551	12.6

${ }^{a}$ Three animals were dosed intravenously at $5 \mathrm{mg} / \mathrm{kg}$ and orally at $10 \mathrm{mg} / \mathrm{kg}$; brain concentrations were taken from the i.v. dosing.
Table 4. Pharmacokinetic Profiles of 12a,b, 13, and R-23 in Sprague-Dawley Rats ${ }^{a}$

cmpd	$\mathrm{CL}(\mathrm{mL} / \mathrm{min} \cdot \mathrm{kg})$	$V_{\mathrm{d}}(\mathrm{L} / \mathrm{kg})$	$t_{1 / 2}(\mathrm{~h})$	$T_{\max }(\mathrm{h})$	$C_{\max }(\mathrm{ng} / \mathrm{mL})$	oral AUC $(\mathrm{ng} / \mathrm{mL} \cdot \mathrm{h})$	$F(\%)$	$C_{\mathrm{b}}(\mathrm{ng} / \mathrm{g})$ at $1,4 \mathrm{~h}$	$\mathrm{~b} / \mathrm{p} \mathrm{ratio} \mathrm{at} 1,4 \mathrm{~h}$
$\mathbf{1 2 a}$	15.0	4.1	3.1	5.3	196	2358	19	12,36	
$\mathbf{1 2 b}$	13.0	2.5	2.2	6.0	163	1867	18	3,27	
$\mathbf{1 3}$	38.7	8.8	2.6	4.0	40	393	8.0 .3		
$R-\mathbf{2 3}{ }^{b}$	64.9	18.6	3.3	2.0	60	517	$1.5,15$	$0.1,0.3$	

[^1]lipophilic diamine $10(\log \mathrm{D}=1.8)$ had a low plasma clearance despite its high tissue distribution ($V_{\mathrm{d}}=13 \mathrm{~L} / \mathrm{kg}$), resulting in a very long $t_{1 / 2}$ of 10 h in mice. However, this compound had low brain penetration, with a b / p ratio of $0.14-0.23$. In an in vitro Caco-2 assay, $\mathbf{1 0}$ exhibited a $P_{\text {app }}$ of $20 \mathrm{~nm} / \mathrm{s}$ from apical to basolateral direction, which was not significantly different from that of compound $8\left(P_{\text {app }}=18 \mathrm{~nm} / \mathrm{s}\right)$. Its permeation from the basolateral to apical direction was about 3.4-fold higher than the apical to basolateral direction ($\mathrm{ba} / \mathrm{ab}$ ratio $=3.4$), suggesting a possible efflux mechanism involving P-glycoprotein. ${ }^{37}$ However, this value was also similar to that of $\mathbf{8}(\mathrm{ba} / \mathrm{ab}$ ratio $=4.4)$, indicating that the P -glycoprotein transporter might not be the only determinant for the difference between these two compounds in brain penetration. The plasma exposure of $\mathbf{1 0}$ after oral dosing was high ($\mathrm{AUC}=1950 \mathrm{ng} / \mathrm{mL} . \mathrm{h}$), and the absolute bioavailability was about 20%.

The aminoacetamide 11 had a moderate plasma clearance, but its brain penetration was low, similar to $\mathbf{1 0}$. This phenomenon might be associated with the high polar surface area of these two compounds (PSA $=79$ and $82 \AA^{2}$ for $\mathbf{1 1}$ and $\mathbf{1 0}$, respectively). The N, N-dimethylpropionamide 12b displayed a moderate clearance and a $t_{1 / 2}$ of 3.5 h . Its brain penetration was much better (b / p ratio $=2.2-2.4$, PSA $=56 \AA^{2}$) than the diamine $\mathbf{1 0}$ and the aminoacetamide 11. The oral absorption of 12b was fast ($T_{\max }=0.5 \mathrm{~h}$) and the oral bioavailability was 23% in this species. The pyridine $R-\mathbf{2 2}$ was also profiled in this study, and its PK parameters were not significantly different from that of its close phenyl analog 11, except for a higher V_{d} value, which resulted in a longer $t_{1 / 2}$.
Because the N, N-dimethylpropionamide 12b exhibited a desirable PK profile in mice (high brain penetration, good oral bioavailability, and moderate $t_{1 / 2}$), this compound and its close analogs 12a, 13, and $R-\mathbf{2 3}$ were also profiled in rats for their pharmacokinetic properties (Table 4). Compounds 12a and 12b displayed very similar profiles in rats. The volume of distribution of $\mathbf{1 2 b}\left(V_{\mathrm{d}}=2.5 \mathrm{~L} / \mathrm{kg}\right)$ was much lower than that in mice, which resulted in a shorter $t_{1 / 2}(2.2 \mathrm{~h})$. Absorption was slow and the $C_{\max }$ appeared at 6 h after oral dosing. The whole brain concentration of $\mathbf{1 2 b}$ in rats was much lower than that in mice, and the b / p ratio was observed to be 0.1 and 0.3 , respectively, at the 1 and 4 h time points after an oral administration. Compound 13, which had a similar lipophilic profile to 12b, displayed a large V_{d} in this species. However, its $t_{1 / 2}$ was not much longer than that of $\mathbf{1 2 b}$ due to the high plasma clearance. The pyridine compound $R-23$ had a very large V_{d} of $18.6 \mathrm{~L} / \mathrm{kg}$, which might be associated with its moderate basicity of the 2-aminopyridine structure (calculated $\mathrm{p} K_{\mathrm{a}}=9.3$ for piperazinepyridine), although its measured lipophilicity at pH 7.4

Table 5. Pharmacokinetic Properties of 12b in Dogs and Monkeys ${ }^{a}$

species	dog	monkey
i.v. dose $(\mathrm{mg} / \mathrm{kg})$	5	5
CL $(\mathrm{ml} / \mathrm{min} \cdot \mathrm{kg})$	29.4	24.3
$V_{\mathrm{d}}(\mathrm{L} / \mathrm{kg})$	11.8	8.5
$t_{1 / 2}(\mathrm{~h})$	4.7	4.1
AUC $(\mathrm{ng} / \mathrm{ml} \cdot \mathrm{h})$	2509	3700
p.o. dose $(\mathrm{mg} / \mathrm{kg})$	10	10
$C_{\max }(\mathrm{ng} / \mathrm{mL})$	142	108
$T_{\max }(\mathrm{h})$	1.0	2.7
AUC $(\mathrm{ng} / \mathrm{mL} \cdot \mathrm{h})$	1475	1070
$F(\%)$	29.4	13.1

${ }^{a}$ Data are the average of three animals.
$(\log \mathrm{D}=3.3)$ was only slightly lower than its close phenyl analog 12b $(\log \mathrm{D}=3.9)$. The plasma clearance of $R-\mathbf{2 3}$ was high ($\mathrm{CL}=64.9 \mathrm{~mL} / \mathrm{min} . \mathrm{kg}$), which resulted in a moderate $t_{1 / 2}$ of 3.3 h . Its plasma exposure and brain concentration after oral dosing was low. Overall, this pyridine compound did not show a better PK profile than its phenyl analogs such as $\mathbf{1 2 b}$.

The pharmacokinetic properties of $\mathbf{1 2 b}$ were also profiled in monkeys and dogs (Table 5). The volume of distribution of 12b was high in both dogs ($V_{\mathrm{d}}=11.8 \mathrm{~L} / \mathrm{kg}$) and monkeys ($V_{\mathrm{d}}=$ $8.5 \mathrm{~L} / \mathrm{kg})$, which matched that in mice ($V_{\mathrm{d}}=11 \mathrm{~L} / \mathrm{Kg}$), but not in rats ($V_{\mathrm{d}}=2.5 \mathrm{~L} / \mathrm{kg}$). The low V_{d} value in rats may be associated with a species-specific phenomenon (e.g., high plasma protein binding). The half-life (4.7 and 4.1 h , respectively, for dogs and monkeys) was moderate and the oral bioavailability was good in dogs, but lower in monkeys.

In Vivo Efficacy in Mouse Cachexia Model

Previously we have shown that when administered twice daily ($3 \mathrm{mg} / \mathrm{kg}$ s.c.) for 4 days to C57BL6, mice bearing subcutaneous Lewis lung carcinoma tumors, 10, stimulated food intake by 82% relative to vehicle-treated controls. The lean body mass of the tumor-bearing mice treated with $\mathbf{1 0}(-0.5 \%)$ significantly increased (9%) over that of tumor-vehicle treated animals (-9.5%), demonstrating a positive effect in this cachexia model. ${ }^{38}$

For the current in vivo study, C57BL/6J male mice were inoculated with Lewis lung carcinoma (LLC) tumor cells. Beginning 11 days after LLC inoculation, animals were treated over 4 days with 12b twice daily (3 and $9 \mathrm{mg} / \mathrm{kg}$, i.p.). LLC tumor bearing mice treated with a high dose of $\mathbf{1 2 b}$ showed a significant increase in food intake relative to vehicle-treated tumor bearing controls (Figure 4A). Body weight was also significantly increased in mice treated with 12b in both dose groups. Analysis of body composition with dual-energy X-ray absorbatometry (DEXA) demonstrated that the greater increase

Figure 4. The effects of compound $\mathbf{1 2 b}$ (i.p., 3 and $9 \mathrm{mg} / \mathrm{kg}$ twice per day) on food intake (4A, left) and lean body mass (4B, right) in tumorbearing mice.

Figure 5. Time-concentration curve of $\mathbf{1 2 b}$ after an i.p. administration $(10 \mathrm{mg} / \mathrm{kg})$ to CD-1 mice ($n=3 ; C_{\max }=1521 \mathrm{ng} / \mathrm{mL} ; T_{\max }=0.3 \mathrm{~h}$; $\mathrm{AUC}=3073 \mathrm{ng} / \mathrm{mL} \cdot \mathrm{h})$.
of body weight in 12b-treated mice was due to sparing of lean body mass (Figure 4B). Tumor bearing animals treated with vehicle demonstrated an $\sim 2 \%$ increase in lean body mass (LBM) over the course of the 14 day experiment, whereas tumor-bearing animals treated with 12b increased their LBM by $\sim 7 \%$ for the $3 \mathrm{mg} / \mathrm{kg}$ group and $\sim 15 \%$ for the $9 \mathrm{mg} / \mathrm{kg}$ group, demonstrating a dose-response effect.

Pharmacokinetic and Pharmacodynamic Relationship

The binding affinity (K_{i}) of $\mathbf{1 2 b}$ at the mouse melanocortin-4 receptor was determined to be 18 nM , which was much lower than that of $\mathbf{1 0}\left(K_{\mathrm{i}}=0.71 \mathrm{nM}\right.$ at mouse MC4R). It also bound to the mouse melanocortin- 3 receptor with a moderate affinity $\left(K_{\mathrm{i}}=340 \mathrm{nM}\right)$. We profiled the pharmacokinetics of 12b in CD-1 mice via an intraperitoneal (i.p.) administration of a 10 $\mathrm{mg} / \mathrm{kg}$ dose. Compound $\mathbf{1 2 b}$ reached a maximal plasma concentration ($C_{\max }$) of $1521 \mathrm{ng} / \mathrm{mL}(\sim 2.7 \mu \mathrm{M}$, Figure 5). At 8 h post-dosing, the plasma concentration was about $100 \mathrm{ng} /$ $\mathrm{mL}(\sim 0.18 \mu \mathrm{M})$. Therefore, although the free fraction of the compound in the brain was unknown, the total brain concentration of $\mathbf{1 2 b}$ at any time point during the in vivo efficacy study should have been 5 -fold above its K_{i} value (18 nM) for a twice a day administration at a $3 \mathrm{mg} / \mathrm{kg}$ dose, considering its high brain/plasma ratio of ~ 2 and assuming linear pharmacokinetics.
Because ghrelin agonists have demonstrated efficacy in cachexia models, ${ }^{39}$ we also measured these MC4 antagonists against the ghrelin receptor in vitro. Compound $\mathbf{1 0}$ was a moderately potent full agonist of the ghrelin receptor, with an EC_{50} value of 79 nM (107% intrinsic activity). In comparison, 12b was a much weaker partial agonist with an EC_{50} of 720 nM and IA of 47% at the ghrelin receptor.

Both 10 and 12b exhibited low binding affinity at the ghrelin receptor. Compound $\mathbf{1 0}$ had 100-fold selectivity for the mouse

MC4R over the ghrelin receptor (K_{i} of 0.7 nM and 720 nM , respectively) and $\mathbf{1 2 b}$ had a K_{i} value of 460 on the ghrelin receptor. The extent to which the ghrelin component of these compounds contributes to the efficacy in the mouse cachexia model is unclear, but unlikely to be significant, especially for compound 12b due to its low intrinsic activity.

Metabolic Profile of 12b

Compound 12b was a fairly lipophilic molecule with a $\log \mathrm{D}$ value of 3.9 , measured by a shake-flask method. It did not show significant inhibitory activity at the major liver enzymes CYP1A2, CYP3A4, CYP2D6, CYP2C9, and CYP2C19 (IC50 $>10 \mu \mathrm{M})$. In liver microsomes of various species, 12b showed moderate metabolic stability and the scaled systemic clearances were $57,35,38.1,17.1$, and $18.5 \mathrm{~mL} / \mathrm{min} \cdot \mathrm{kg}$, respectively, in mouse, rat, monkey, dog, and human. After incubation with human liver microsomes, two major metabolites were observed. The metabolic profiles were similar in liver microsomes of CD-1 mice, Sprague-Dawley rats, rhesus monkeys, and beagle dogs. One of the major metabolites was identified as the N-demethylation product. The other was characterized as the hydroxylation of the piperazine ring based on MS-MS analyses.

Conclusion

In conclusion, a series of α-isobutylbenzylamine derivatives 7-13 were synthesized and studied as potent and selective antagonists of the melanocortin-4 receptor. Pyridine alternatives 20-23 were also studied to compare to their benzene analogs. Although potent and selective MC4R antagonists such as $R-\mathbf{2 3}$ were identified, and these pyridine derivatives did not exhibit an advantage in pharmacokinetic properties over their phenyl analogs. Compounds $\mathbf{1 0}$ and 12b were tested in a murine cachexia model and efficacy was demonstrated. Our results provide more evidence that a potent and selective MC4R antagonist has a potential utility in the treatment of cancer cachexia.

Experimental Section

Chemistry. General Methods. NMR spectra were recorded on a Varian 300 MHz spectrometer with TMS as an internal standard.
${ }^{13} \mathrm{C}$ NMR spectra were recorded at 75 MHz . Chemical shifts are reported in parts per million (δ), and signals are expressed as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), or br (broad). High resolution mass spectra were measured at the Scripps Center for Mass Spectrometry using MALDI-FTMS. Purity measurements were performed on an HP Agilent 1100 HPLC-MS (detection at 220 and 254 nm).
(1S)-[2-\{4-[3-(2,4-Dichlorophenyl)propionyl]-1-piperazinyl\}-5-(trifluoromethyl)phenyl]-3-methylbutylamine Trifluoroacetate (5).

Trifluoroacetic acid $(0.2 \mathrm{~mL})$ was added to a solution of $4-\{2-[(1 S)$ -((S)-tert-butanesulfinylamino)-3-methylbutyl]- 4-(trifluorometh-yl)phenyl\}-1-piperazinecarboxylic acid tert-butyl ester ($\mathbf{6 a}, 50 \mathrm{mg}$, $0.096 \mathrm{mmol})$ in dichloromethane $(0.8 \mathrm{~mL})$, and the mixture was stirred at r.t. for 50 min . The reaction mixture was basified with saturated aqueous NaHCO_{3} solution (5 mL) and extracted with EtOAc (30 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to provide $4-\{2-[(1 S)$-((S)-tert-butanesulfi-nylamino)-3-methylbutyl]-4-trifluoromethylphenyl\}-1-piperazine as white foam, which was dissolved in DMF/dichloromethane (1:3, 1 $\mathrm{mL}) . \mathrm{NaHCO}_{3}(16.2 \mathrm{mg}, 0.192 \mathrm{mmol}), 3$-(2,4-dichlorophenyl)propionic acid ($25.3 \mathrm{mg}, 0.12 \mathrm{mmol}$), HOBt ($15.5 \mathrm{mg}, 0.12 \mathrm{mmol}$), and EDC ($22.0 \mathrm{mg}, 0.12 \mathrm{mmol}$) were sequentially added to this solution. The reaction mixture was stirred at r.t. overnight, diluted with EtOAc (20 mL), washed with 5% aqueous $\mathrm{HCl}(5 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and brine (5 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was concentrated in vacuo to provide a crude product that was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$ and treated with $\mathrm{HCl}(58 \mu \mathrm{~L} 4 \mathrm{~N} \mathrm{HCl}$ in dioxane). The mixture was stirred at r.t. for 1 h and concentrated in vacuo. The residue was purified by flash column chromatography ($5 \sim 15 \% \mathrm{MeOH}$ in dichloromethane) to provide the titled compound $\mathbf{5}$ as a yellowish foam $(55.2 \mathrm{mg}$, 93%). HPLC purity: 100% (220 and 254 nm); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$, TFA salt): $0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.38-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.92(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.82-3.12(\mathrm{~m}, 5 \mathrm{H}), 3.21-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.80$ $(\mathrm{m}, 3 \mathrm{H}), 5.00-5.08(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=1.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$. MS: $516\left(\mathrm{MH}^{+}\right)$.
N-(1S-[2-\{4-[3-(4-Chlorophenyl)propionyl]-1-piperazinyl\}-5-(trifluoromethyl)phenyl]-3-methylbutyl)-2-aminoacetamide (11). In a 4 dram vial, the crude ($1 S$)-(2-\{4-[3-(2,4-dichlorophenyl)pro-pionyl]-1-piperazinyl\}-5-(trifluoromethyl)phenyl)-3-methylbutylamine (5, 0.70 g), N-Boc-glycine ($0.19 \mathrm{~g}, 1.35 \mathrm{mmol}$), NaHCO_{3} $(208 \mathrm{mg}, 2.48 \mathrm{mmol})$, and $\operatorname{HOBt}(0.183 \mathrm{~g}, 1.35 \mathrm{mmol})$ were combined and dissolved in dichloromethane (3 mL). The mixture was capped and stirred at r.t. for 15 min . EDC $(0.258 \mathrm{~g}, 1.35 \mathrm{mmol})$ was added, and the mixture was stirred for 1 h . The mixture was diluted with dichloromethane (2 mL) and washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 1 \mathrm{~mL})$ and brine $(1 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated by a stream of nitrogen. The residue was dissolved in (1:1) TFA/CH2Cl ${ }_{2}$, and the solution was stirred at r.t. for 30 min . The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica using 1:1 hexane/ethyl acetate as the eluent to afford the titled compound as a light yellow solid (55 $\mathrm{mg}, 70 \%$ yield). HPLC purity: 98% (220 nm) and $97 \% ~(254 \mathrm{~nm}$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$, TFA salt): $0.97(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.97$ (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.68$ $(\mathrm{m}, 1 \mathrm{H}), 2.56-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.15-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.90(\mathrm{~m}, 6 \mathrm{H}), 5.65-5.72(\mathrm{~m}$, $1 \mathrm{H}), 7.24-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=$ $1.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$. MS: $573\left(\mathrm{MH}^{+}\right)$. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}, 573.2011$; found, 573.2009.
(1S)-[2-\{4-[2-Methyl-3-(2-methoxy-4-chlorophenyl)propionyl]-1-piperazinyl\}-5-(trifluoromethyl)phenyl]-3-methylbutylamine Mesylate (7). This compound was prepared using a procedure similar to that for 5 from 6a and 2-methyl-3-(2-methoxyl-4chlorophenyl)propionic acid. White powder; HPLC purity: 100% (220 and 254 nm). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $0.85(\mathrm{~d}, ~ J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.99$ and $1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.38(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MsOH})$, $2.30-3.20(\mathrm{~m}, 3 \mathrm{H}), 3.30-3.70(\mathrm{~m}, 8 \mathrm{H}), 3.80$ and $3.83(\mathrm{~s}, 3 \mathrm{H}), 4.79$ $(\mathrm{m}, 1 \mathrm{H}), 6.92-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 8.20$ (brs, 3 H). MS: $526\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{MeSO}_{3} \mathrm{H} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(1S)-(2-\{4-[(2R)-Methyl-3-(4-chlorophenyl)propionyl]-1-pip-erazinyl\}-5-methylphenyl)-3-methylbutylamine Mesylate (8). This compound was prepared using a procedure similar to that for 5 from $\mathbf{6 b}$ and $2 R$-methyl-3-(4-chlorophenyl)propionic acid (16a). White powder; HPLC purity: $97.9 \%(220 \mathrm{~nm})$ and 97.7% (254 nm).
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, free base): $0.84(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89$ (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~m}$, $1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=5.7,12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.80(\mathrm{~m}, 3 \mathrm{H}), 2.90-3.50(\mathrm{~m}, 8 \mathrm{H}), 4.56(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.40$ (brs, 1H), 6.94 (brs, 1 H), 7.07 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (d, $J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.36$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$). MS: 442 $\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{ClN}_{3} \mathrm{O} \cdot 1.3 \mathrm{MeSO}_{3} \mathrm{H} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.
(1S)-(2-\{4-[(2R)-(2-Oxo-1-pyrrolidinyl)-3-(2,4-dichlorophenyl) propionyl]-1-piperazinyl\}-3-fluorophenyl)-3-methylbutylamine (9). TFA (4.5 mL) was added to a solution of $4-\{2-[(1 S)$ -((S)-tert-butanesulfinylamino)-3-methylbutyl]- 6-fluorophenyl\}-1piperazinecarboxylic acid tert-butyl ester ($\mathbf{6 d}, 1.02 \mathrm{~g}, 2.17 \mathrm{mmol}$) in dichloromethane (18 mL), and the mixture was stirred at r.t. for 45 min . The reaction mixture was basified with saturated aqueous NaHCO_{3} solution $(100 \mathrm{~mL})$ and extracted with EtOAc $(2 \times 100$ $\mathrm{mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to provide 4-\{6-fluoro-2-[(1S)-((S)-tert-butylsulfinylamino)-3-methylbutyl]phenyl\}-1-piperazine as white foam, which was dissolved in DMF/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 3,12 \mathrm{~mL}) . \mathrm{NaHCO}_{3}(0.365 \mathrm{~g}, 4.34$ mmol), N-Boc-D-(2,4-Cl)Phe-OH ($0.871 \mathrm{~g}, 2.61 \mathrm{mmol}$), HOBt $(0.352 \mathrm{~g}, 2.61 \mathrm{mmol})$, and $\operatorname{EDC}(0.50 \mathrm{~g}, 2.61 \mathrm{mmol})$ were sequentially added to this solution. The reaction mixture was stirred at r.t. overnight. The mixture was diluted with EtOAc (60 mL), washed with 5% aqueous $\mathrm{HCl}(15 \mathrm{~mL})$, saturated aqueous NaHCO_{3} $(15 \mathrm{~mL})$ and brine (15 mL), and was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was concentrated in vacuo, and the residue was purified by flash column chromatography ($30 \sim 60 \% \mathrm{EtOAc}$ in hexanes) to provide $N-((1 S)$-[2-\{4-[(2R)-(tert-butoxycarbonylamino)-3-(2,4-dichlorophenyl)propionyl]-1-piperazinyl $\}$-3-fluorophenyl]-3-meth-ylbutyl)-(S)-tert-butanesulfinamide as a white solid ($1.295 \mathrm{~g}, 87 \%$).

TFA (1 mL) was added to a solution of the above compound ($338 \mathrm{mg}, 0.494 \mathrm{mmol}$) in dichloromethane (4 mL), and the mixture was stirred at r.t. for 1 h . The reaction mixture was basified with saturated aqueous NaHCO_{3} solution (30 mL) and extracted with EtOAc $(2 \times 30 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to provide $N-((1 S)-\{2-[4-[(2 R)$-amino-3-(2,4-dichlorophenyl)propionyl]-1-piperazinyl\}-3-fluorophenyl]-3-methylbutyl)-(S)-tert-butanesulfinamide as a white foam, which was dissolved in 1,2-dichloroethane (5 mL). This solution was treated with acetic acid ($118 \mu \mathrm{~L}, 1.98 \mathrm{mmol}$) and succinic semialdehyde ($374 \mu \mathrm{~L} 15 \mathrm{wt} \%$ solution in water, 0.592 mmol) and stirred for $30 \mathrm{~min} \mathrm{NaBH}(\mathrm{OAc})_{3}(220 \mathrm{mg}, 0.987 \mathrm{mmol})$ was added, and the mixture was stirred at r.t. for 24 h . LC-MS showed the reductive amination was completed and the ratio of lactam product $($ M.W. $=653)$ to carboxylic acid product $($ M.W. $=671)$ was 1:1. The reaction was quenched with brine (10 mL), and the products were extracted with $\mathrm{EtOAc}(40 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was dissolved in DMF/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 3,10 \mathrm{~mL})$, and $\mathrm{NaHCO}_{3}(0.083 \mathrm{~g}, 0.988 \mathrm{mmol}), \mathrm{HOBt}$ $(0.080 \mathrm{~g}, 0.592 \mathrm{mmol})$, and $\operatorname{EDC}(0.113 \mathrm{~g}, 0.592 \mathrm{mmol})$ were sequentially added. The reaction mixture was stirred at r.t. overnight, diluted with $\mathrm{EtOAc}(60 \mathrm{~mL}$), washed with 5% aqueous $\mathrm{HCl}(10$ mL), saturated aqueous NaHCO_{3} solution (10 mL), and brine (10 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solution was concentrated in vacuo, and the residue was purified by flash column chromatography ($40 \sim 70 \% \mathrm{EtOAc}$ in hexanes) to provide N -((1S)-\{2-[4-[(2R)-(2-oxo-1-pyrrolidinyl)-3-(2,4-dichlorophenyl)propionyl]-1-piperazinyl\}-3-fluorophenyl]-3-methylbutyl)-(S)-tert-butanesulfinamide as a white solid ($0.239 \mathrm{~g}, 74 \%$).

To a solution of the above compound ($239 \mathrm{mg}, 0.366 \mathrm{mmol}$) in $\mathrm{MeOH}(4 \mathrm{~mL})$ was added 2 equiv $\mathrm{HCl}(183 \mu \mathrm{~L}, 4 \mathrm{~N} \mathrm{HCl}$ in dioxane), and the mixture was stirred at r.t. for 30 min . The mixture was concentrated in vacuo to give the crude product. A small sample was purified using HPLC-MS. Light yellow foam; HPLC purity: $100 \%(220 \mathrm{~nm}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, free base): $0.91(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.63$ $(\mathrm{m}, 2 \mathrm{H}), 2.00-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.99(\mathrm{~m}, 5 \mathrm{H})$, $3.12-3.30(\mathrm{~m}, 5 \mathrm{H}), 3.40-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.77(\mathrm{~m}, 1 \mathrm{H})$, $3.90-4.00(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.63(\mathrm{~m}, 2 \mathrm{H}), 5.41-5.55(\mathrm{~m}, 1 \mathrm{H})$, $6.90-7.00(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.45$
(dd, $J=1.8,10.1 \mathrm{~Hz}, 1 \mathrm{H})$. MS: $549\left(\mathrm{MH}^{+}\right)$. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{FN}_{4} \mathrm{O}_{2}, 549.2244$; found, 549.2266.
N-(1-Aminoethyl)- N-[(1S)-(2-\{4-[(2R)-(2-oxo-1-pyrrolidinyl)-3-(2,4-dichlorophenyl)propionyl]-1-piperazinyl\}-3-fluorophenyl)-3-methylbutyl]amine Mesylate (10). A solution of (1S)-(2-\{4-[(2R)-(2-oxo-1-pyrrolidinyl)-3-(2,4-dichlorophenyl)propionyl]-1-piperazinyl\}-3-fluorophenyl)-3-methylbutylamine (9, $34.0 \mathrm{mg}, 0.0615$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was treated with glacial acetic acid (7.4 $\mu \mathrm{L}$) and tert-butyl- N-(2-oxoethyl)carbamate ($14.7 \mathrm{mg}, 0.0923$ $\mathrm{mmol})$.The mixture was stirred at r.t. for 30 min , and then $\mathrm{NaBH}(\mathrm{OAc})_{3}(26.1 \mathrm{mg}, 0.123 \mathrm{mmol})$ was added. The resulting suspension was stirred at room temperature for 14 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, transferred to a separatory funnel, and washed with saturated NaHCO_{3} aqueous solution ($2 \times 5 \mathrm{~mL}$). The organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with ethyl acetate. The product was obtained as white foam, which was treated with 2 mL of TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) for 1 h . The excess of TFA and solvent were removed in vacuo, and the crude product was purified by flash column chromatography ($5 \sim 10 \% \mathrm{MeOH}$ $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide the titled product as a white solid ($20 \mathrm{mg}, 54 \%$). The free base was converted to the mesylate salt by treatment with 1 equiv of methanesulfonic acid as a white solid; HPLC purity: $99 \%(220 \mathrm{~nm})$ and $97.8 \%(254 \mathrm{~nm}) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): 0.86 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 2.13$ $(\mathrm{m}, 2 \mathrm{H}), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeSO}_{3} \mathrm{H}\right), 2.60-3.45(\mathrm{~m}, 16 \mathrm{H}), 3.60(\mathrm{~m}, 2 \mathrm{H})$, $4.38(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{t}, J=7.8 \mathrm{~Hz}$, 1H), 7.30 (brs, 3 H), 7.39 (m, 5H), 7.57 (m, 1H). MS: $592\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{FN}_{5} \mathrm{O}_{2} \cdot \mathrm{MeSO}_{3} \mathrm{H} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-(1S-[2-\{4-[(2R)-Methyl-3-(4-chlorophenyl)propionyl]-1-piper-azinyl\}-5-chlorophenyl]-3-methylbutyl)-3-(dimethylamino)propionamide Hydrochloride (12b). 4-\{2-[(1S)-((S)-tert-Butanesulfinyl-amino)-3-methylbutyl]-4-chlorophenyl\}-1-piperazinecarboxylic acid tert-butyl ester ($\mathbf{6 c}, 21.39 \mathrm{~g}, 44.1 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(440 \mathrm{~mL})$ with magnetic stirring. Trifluoroacetic acid $(88 \mathrm{~mL})$ was added slowly, and the resulting solution was stirred at r.t. for 1 h . The reaction mixture was slowly poured into $0.5 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ (500 mL). After all the bubbling had ceased, the mixture was placed in a separatory funnel and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, and the combined organics were washed with water and brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo to give $4-\{2$ -[(1S)-((S)-tert-butylsulfinylamino)-3-methylbutyl]-4-chlorophenyl\}-1-piperazine as a pale yellow foam (18 g), which was used in the next step without further purification.
($2 R$)-methyl-3-(4-chlorophenyl)propionic acid ($\mathbf{1 6 a}, 10.1 \mathrm{~g}, 50.9$ $\mathrm{mmol})$, diisopropylethylamine ($17.6 \mathrm{~mL}, 101 \mathrm{mmol}$), and HOBt $(10.27 \mathrm{~g}, 76.1 \mathrm{mmol})$ were sequentially added to a stirring solution of the above compound ($16.98 \mathrm{~g}, 44.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(220 \mathrm{~mL})$ under N_{2}. The resulting mixture was stirred at r.t. for 0.5 h . Then EDC ($14.58 \mathrm{~g}, 76.1 \mathrm{mmol}$) was added portionwise, and the resulting solution was stirred at r.t. overnight. The reaction mixture was placed in a separatory funnel and washed with $0.1 \mathrm{~N} \mathrm{HCl}(200$ mL), water, saturated aqueous NaHCO_{3}, and brine. The organics were dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel, eluting with a $3: 1 \mathrm{v} / \mathrm{v}$ mixture of hexanes and ethyl acetate, which was gradually increased to a $1: 2$ ratio, to give $N-((1 S)-\{2-[4-[(2 R)-$ methyl-3-(2,4-dichlorophenyl)propionyl]-1-piperazinyl\}-5-chlo-rophenyl]-3-methylbutyl)-(S)-tert-butanesulfinamide ($13.80 \mathrm{~g}, 55 \%$ over 2 steps). $R_{f}=0.36(1: 1 \mathrm{v} / \mathrm{v}$ hexanes $/$ EtOAc $) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 0.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.19$ $(\mathrm{d}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 1.54-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.70$ (m, 1H), 2.71-2.63 (m, 2H), 2.89-2.82 (m, 1H), 3.01-2.95 (m, 2H), $4.00-3.00(\mathrm{br}, 6 \mathrm{H}), 4.85(\mathrm{br}, 1 \mathrm{H}), 6.95(\mathrm{br}, 1 \mathrm{H}), 7.38-7.13(\mathrm{~m}$, 7H). MS: $566\left(\mathrm{MH}^{+}\right)$.

The above compound ($13.78 \mathrm{~g}, 24.3 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(243 \mathrm{~mL})$, and $\mathrm{HCl}(2 \mathrm{M}$ in ether, $15.81 \mathrm{~mL}, 31.61 \mathrm{mmol}$) was added. The reaction mixture was stirred at r.t. for 45 min . Nitrogen gas was then bubbled through the reaction mixture to
evaporate residual HCl , and the remaining solvent was removed in vacuo. The residue was dissolved in dichloromethane (250 mL) and washed with saturated $\mathrm{NaHCO}_{3}(3 \times 250 \mathrm{~mL})$ and brine (250 $\mathrm{mL})$. The organic layer was separated, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo to give $N-((1 S)-(2-\{4-$ [(2R)-methyl-3-(4-chlorophenyl)propionyl]-1-piperazinyl\}-5-chlo-rophenyl)-3-methylbutylamine as an off-white foam in quantitative yield. This compound ($11.3 \mathrm{~g}, 24.32 \mathrm{mmol}$) was dissolved in dichloromethane (122 mL) along with 3-dimethylaminopropionic acid hydrochloride ($3.74 \mathrm{~g}, 24.32 \mathrm{mmol}$) and triethylamine (3.42 $\mathrm{mL}, 24.32 \mathrm{mmol}$). The reaction mixture was stirred at r.t. for 5 min and then HOBt ($3.28 \mathrm{~g}, 24.3 \mathrm{mmol}$) was added. After another 5 min , EDC ($4.66 \mathrm{~g}, 24.32 \mathrm{mmol}$) was added to the reaction mixture, and stirring was continued at r.t. for an additional 8 h . The reaction mixture was washed with saturated $\mathrm{NaHCO}_{3}(3 \times$ 250 mL) and brine (250 mL). The organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica using 5\% methanol/dichloromethane as the eluent $\left(R_{f}=0.3\right)$ to give the desired product as a free base $(10.35 \mathrm{~g}, 18.42 \mathrm{mmol}, 76 \%$ yield). HPLC purity: $98.4 \%(220 \mathrm{~nm})$ and $97.6 \% ~(254 \mathrm{~nm}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 0.93(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.18$ (d, $J=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.60(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.70(\mathrm{~m}, 10 \mathrm{H}) 2.35$ (s, 6H), 2.70-3.62 (m, 5H), $5.44(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 8.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$. MS: $561\left(\mathrm{MH}^{+}\right)$.
N-((1S)-[2-\{4-[(2R)-Methyl-3-(4-chlorophenyl)propionyl]-1-pip-erazinyl\}-5-chlorophenyl]-3-methylbutyl)-3-(dimethylamino)propionamide ($10.02 \mathrm{~g}, 17.84 \mathrm{mmol}$) was dissolved in dichloromethane $(90 \mathrm{~mL})$. With constant stirring, HCl (2 M in ether, $13.38 \mathrm{~mL}, 26.76$ $\mathrm{mmol})$ was added in one portion. The reaction mixture was stirred at r.t. for 5 min and then nitrogen gas was bubbled through the reaction mixture for 10 min to evaporate excess HCl . The remaining solvent was removed in vacuo. Ether (200 mL) was then added to the solid residue, and the mixture was evaporated to dryness (repeated three times). The residual solid powder was then filtered off and washed with additional ether $(3 \times 200 \mathrm{~mL})$. The solid was dried in a vacuum oven at $40^{\circ} \mathrm{C}$ for 4 h and then at r.t. for 2 days. The product was recovered as a hydrochloride salt in 98% yield $(10.49 \mathrm{~g}, 17.55 \mathrm{mmol})$ as an off-whiter powder. $[\alpha]^{25}{ }_{\mathrm{D}}=-22.65$ (1.04, MeOH). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 0.86(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.02$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H})$, $2.60(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~m}$, $2 \mathrm{H}), 3.20(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~m}, 2 \mathrm{H}), 4.15$ (brs, 4H), $5.33(\mathrm{~m}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~m}, 3 \mathrm{H}), 8.68(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 10.2(\mathrm{brs}, 1 \mathrm{H}) . \mathrm{MS}: 561.3\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot 2 /\right.$ $\left.3 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-(1S-[2-\{4-[(2R)-Methyl-3-(4-chlorophenyl)propionyl]-1-pip-erazinyl\}-5-methylphenyl]-3-methylbutyl)-3-(dimethylamino)propanamide Mesylate (12a). This compound was synthesized using a procedure similar to that for 12b from 6b. HPLC purity: 100% $(220 \mathrm{~nm})$ and $95.1 \%(254 \mathrm{~nm}) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $0.86(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H})$, $2.22(\mathrm{~s}, 3 \mathrm{H}), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeSO}_{3} \mathrm{H}\right), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 4 \mathrm{H})$, $2.60(\mathrm{~s}, 6 \mathrm{H}), 2.80(\mathrm{~m}, 1 \mathrm{H}), 2.80-3.36(\mathrm{~m}, 10 \mathrm{H}), 5.37(\mathrm{~m}, 1 \mathrm{H}), 6.85$ (brs, 1H), $6.98(\mathrm{dd}, J=1.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~s}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.44(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H})$. MS: $541\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{ClN}_{4} \mathrm{O}_{2} \cdot \mathrm{MeSO}_{3} \mathrm{H} \cdot 1 /\right.$ $\left.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.
N-[(1S)-1-[2-[4-[(2R)-3-(2,4-Dichlorophenyl)-2-(2-oxo-1-pyr-rolidinyl)propionyl]-1-piperazinyl]-5-methylphenyl]-3-methyl-butyl]-3-(dimethylamino)propanamide Mesylate (13). This compound was synthesized from $\mathbf{6 b}$ using a procedure similar to that for $\mathbf{9}$, followed by a procedure similar to that for $\mathbf{1 2 b}$. White solid; HPLC purity: $98.7 \%(220 \mathrm{~nm})$ and $96.6 \% ~(254 \mathrm{~nm}) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.27(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~s}$, 3 H), 2.28 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{MeSO}_{3} \mathrm{H}$), 2.35-2.60 (m, 9H), $2.63(\mathrm{~s}, 6 \mathrm{H}), 2.80$ $(\mathrm{m}, 1 \mathrm{H}), 2.88-3.50(\mathrm{~m}, 6 \mathrm{H}), 5.37(\mathrm{~m}, 1 \mathrm{H}), 6.86$ (brs, 1H), 6.98 (dd, $J=1.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=$
8.1 Hz, 2H), $7.35(\mathrm{~d}, ~ J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$. MS: $644\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{47} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{3} \cdot \mathrm{MeSO}_{3} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.

4S-Benzyl-3-[3-(4-chlorophenyl)-2R-methylpropionyl]oxazo-lidin-2-one (15a). (S)-4-benzyl-3-propionyloxazolidin-2-one (14, $46.7 \mathrm{~g}, 200 \mathrm{mmol}$) was dissolved in THF (870 mL) under an inert atmosphere $\left(\mathrm{N}_{2}\right)$. This was then cooled to $-70^{\circ} \mathrm{C}$ (dry ice/acetone) and treated with sodium hexamethyldisilazide (110 mL of a 2.0 M solution in THF, 220 mmol) in a dropwise fashion (addition lasted for $\sim 45 \mathrm{~min}$). The resulting mixture was stirred at $-70^{\circ} \mathrm{C}$ for 1 h . A solution of 4-chlorobenzyl bromide ($53.4 \mathrm{~g}, 260 \mathrm{mmol}$) in THF $(160 \mathrm{~mL})$ was then added dropwise over 30 min . The resulting mixture was stirred at $-70^{\circ} \mathrm{C}$ for 6 h and then allowed to warm to r.t. overnight. The reaction was carefully quenched with water (100 mL), and the solvent was removed in vacuo. The resulting slurry was suspended in water (200 mL) and filtered. The solid was rinsed with EtOAc and air-dried to give the desired product $(36.67 \mathrm{~g}, 102.6$ $\mathrm{mmol}, 51 \%)$. A second crop of product was obtained from the filtrates after the organic layer was separated, washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The resulting brown solid was suspended in MeOH and filtered to give 17.22 g (48.2 $\mathrm{mmol}, 24 \%)$ of the desired product. Total yield, $53.89 \mathrm{~g}(75 \%)$. Only one diastereomer was observed by ${ }^{1} \mathrm{H}$ NMR, and stereochemistry was confirmed by single crystal X-ray analysis. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.18(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.66-2.56(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.07$ $(\mathrm{m}, 2 \mathrm{H}), 4.22-4.02(\mathrm{~m}, 3 \mathrm{H}), 4.71-4.63(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 2 \mathrm{H})$, 7.32-7.21 (m, 7H).

2R-Methyl-3-(4-chlorophenyl)propionic Acid (16a). $4 S$-Ben-zyl-3-[3-(4-chlorophenyl)-2R -methylpropionyl]oxazolidin-2-one ($\mathbf{1 5 a}, 53.89 \mathrm{~g}, 150.7 \mathrm{mmol})$ was dissolved in a $4: 1 \mathrm{v} / \mathrm{v} \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture (750 mL) and cooled to $0^{\circ} \mathrm{C}$ (ice/water bath). Hydrogen peroxide 50% (60 mL) was added slowly, followed by a solution of lithium hydroxide monohydrate ($11.08 \mathrm{~g}, 263.7 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}$ (380 mL). The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h . $\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(155.70 \mathrm{~g}, 618.0 \mathrm{mmol})$ dissolved in $\mathrm{H}_{2} \mathrm{O}(250 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was allowed to slowly reach r.t. The volatiles were removed in vacuo, and the aqueous residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 300 \mathrm{~mL})$. The aqueous layer was separated, made acidic with 2.0 N HCl , and then extracted with EtOAc $(2 \times 250 \mathrm{~mL})$. The organics were washed with brine, dried over MgSO_{4}, and concentrated in vacuo to give the titled compound as an oil that solidified upon standing ($29.80 \mathrm{~g}, 150.1$ mmol, 99%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.18(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$, 2.80-2.62 (m, 2H), $3.02(\mathrm{dd}, J=6.0,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) .[\alpha]^{25}{ }_{\mathrm{D}}=-27.930(c 8.685$ $\mathrm{mg} / \mathrm{cc}, \mathrm{MeOH}) .{ }^{40}$

4-\{3-[(1R)-((S)-tert-Butanesulfinylamino)-3-methylbutyl]-2-py-ridinyl\}-1-piperazinecarboxylic Acid tert-Butyl Ester (\boldsymbol{R}-19a). Lithium diisopropylamide ($131 \mathrm{~mL}, 262 \mathrm{mmol}, 2 \mathrm{M}$ in THF) was added to a stirring solution of 2-bromopyridine ($25 \mathrm{~mL}, 262 \mathrm{mmol}$) in THF (208 mL) at $-78^{\circ} \mathrm{C}$ under nitrogen. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and then a solution of DMF (20.3 $\mathrm{mL}, 262 \mathrm{mmol})$ in THF (104 mL) was added. After the addition, the reaction mixture was allowed to warm to r.t. and was neutralized by adding to a saturated solution of ammonium chloride. The crude product was extracted with ethyl acetate $(3 \times 200 \mathrm{~mL})$, the organic layers were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered, and solvent was removed in vacuo. The residue was purified by column chromatography on silica using 15% ethyl acetate/hexanes as the eluent $\left(R_{f}=0.3\right)$. The product 2-bromo-3-formylpyridine 17a was obtained as yellow oil ($9.4 \mathrm{~g}, 50.5 \mathrm{mmol}, 19 \%$ yield).

2-Bromo-3-formylpyridine ($\mathbf{1 7 a}, 9.4 \mathrm{~g}, 50.5 \mathrm{mmol}$) was dissolved in DMF (100 mL) along with diisopropylethylamine ($8.8 \mathrm{~mL}, 50.5$ $\mathrm{mmol})$ and 1-Boc-piperazine $(9.4 \mathrm{~g}, 50.5 \mathrm{mmol})$ in a reaction flask. The reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 8 h , then cooled to r.t., and quenched with saturated $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$. The product was extracted with ethyl acetate $(3 \times 100 \mathrm{~mL})$, the organic layers were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered, and the solvent was removed in vacuo. The residue was purified by column chromatography on silica using 25% ethyl acetate/hexanes
as the eluent $\left(R_{f}=0.3\right)$. The product 2-(4-Boc-1-piperazinyl)-3formylpyridine was obtained as a yellow solid $(9.8 \mathrm{~g}, 33.5 \mathrm{mmol}$, 67% yield).

2-(4-Boc-1-piperazinyl)-3-formylpyridine ($3 \mathrm{~g}, 10.3 \mathrm{mmol}$) was dissolved in THF (51 mL) along with (S)-tert-butanesulfinamide $(1.4 \mathrm{~g}, 11.3 \mathrm{mmol})$ and titanium(IV) ethoxide $(8.6 \mathrm{~mL}, 41.2 \mathrm{mmol})$. The reaction mixture was allowed to stir at r.t. for 8 h and then brine (20 mL) was added. The reaction mixture was filtered, and the solid was washed with ethyl acetate $(3 \times 75 \mathrm{~mL})$. The organic layer was collected, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to give the titled compound as a yellow solid in quantitative yield without further purification $(4.1 \mathrm{~g}, 10.3 \mathrm{mmol})$.

The above intermediate ($4.1 \mathrm{~g}, 10.3 \mathrm{mmol}$) in THF (30 mL) was cooled to $-40^{\circ} \mathrm{C}$, and $\mathrm{Me}_{3} \mathrm{Al}(15.45 \mathrm{~mL}, 30.9 \mathrm{mmol})$ was added. The reaction mixture was allowed to stir at $-40^{\circ} \mathrm{C}$ under nitrogen atmosphere for 20 min and was then cooled to $-78^{\circ} \mathrm{C}$. To the reaction mixture, isobutyl lithium ($12.9 \mathrm{~mL}, 20.6 \mathrm{mmol}, 1.6 \mathrm{M}$ in heptane) was added slowly. After the addition was complete, the reaction was warmed to r.t. and carefully quenched with water. The mixture was then concentrated in vacuo and diluted with dichloromethane $(150 \mathrm{~mL})$. The organic layer was then washed with saturated NaHCO_{3} solution $(2 \times 100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica using 75% ethyl acetate/hexanes as the eluent ($R_{f}=0.3$). The titled product was obtained as a yellow solid ($2.8 \mathrm{~g}, 6.15 \mathrm{mmol}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 0.89(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.24-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.5-1.58(\mathrm{~m}$, $1 \mathrm{H}), 2.80-3.40(\mathrm{~m}, 4 \mathrm{H}), 3.40-3.70(\mathrm{~m}, 4 \mathrm{H}), 4.69(\mathrm{dd}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.06(\mathrm{dd}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.29$ (dd, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$.

4-\{3-[(1R)-((S)-tert-Butanesulfinylamino)-3-methylbutyl]-6-methyl-2-pyridinyl\}-1-piperazinecarboxylic Acid tert-Butyl Ester (\boldsymbol{R}-19b). This compound was synthesized from 2-bromo-6methylpyridine and S-tert-butanesulfinamide using a procedure similar to that for 19a. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 0.87(\mathrm{~d} . ~ J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.94$ (d. $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.12$ (s. 9 H), 1.46 (s. 9 H$), 1.48-1.58$ $(\mathrm{m}, 2 \mathrm{H}), 1.70-1.78(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.8-3.05(\mathrm{~m}, 4 \mathrm{H})$, $3.40-3.78(\mathrm{~m}, 4 \mathrm{H}), 4.64(\mathrm{dd}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$. A small sample was crystallized in ether/hexanes to give single crystals for X-ray determination.

1-\{3-[(1R)-Amino-3-methylbutyl]-2-pyridinyl\}-4-[3-(2,4-dichlo-rophenyl)-propionyl]piperazine Trifluoroacetate (R-20a). 4-\{3-[(1R)-((S)-tert-Butanesulfinylamino)-3-methylbutyl]-2-pyridinyl\}-1-piperazinecarboxylic acid tert-butyl ester (R - $\mathbf{1 9 0}, 452.6 \mathrm{mg}, 1$ mmol) was allowed to stir at r.t. for 1.5 h in a $20 \% \mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixture $(20 \mathrm{~mL})$. The reaction was quenched with saturated NaHCO_{3} solution (5 mL). The organic layer was washed with saturated NaHCO_{3} solution $(2 \times 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The deprotected intermediate was recovered in quantitative yield. A small portion of this piperazine intermediate ($35.2 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in dichloromethane $(0.5 \mathrm{~mL})$ along with $\mathrm{HOBt}(13.5$ $\mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{NaHCO}_{3}(8.4 \mathrm{mg}, 0.1 \mathrm{mmol})$, and $3-(2,4-$ dichlorophenyl)propanic acid ($21.9 \mathrm{mg}, 0.1 \mathrm{mmol}$). The reaction mixture was allowed to stir at r.t. for 10 min and then EDC (19.2 $\mathrm{mg}, 0.1 \mathrm{mmol}$) was added. The reaction was then stirred for an additional 8 h followed by quenching with saturated NaHCO_{3} solution. The organic layer was separated, washed with brine (2 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$, and $0.2 \mathrm{M} \mathrm{HCl} /$ ether $(1 \mathrm{~mL})$ was added. The reaction was stirred at r.t. for 1 h and then solvent was removed under a stream of nitrogen. The crude product was purified by prep HPLC to yield the desired product as the TFA salt ($15 \mathrm{mg}, 0.026 \mathrm{mmol}, 26 \%$ yield). Light yellow foam; HPLC purity: $98 \%(220 \mathrm{~nm})$ and $95 \%(254 \mathrm{~nm}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.37-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.93(\mathrm{~m}, 1 \mathrm{H})$, $2.76(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.85-2.96(\mathrm{~m}, 4 \mathrm{H}), 3.00-3.13(\mathrm{~m}, 4 \mathrm{H})$, $3.55-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.84(\mathrm{~m}, 3 \mathrm{H}), 4.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=1.8$,
$7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.39$ (dd, $J=1.8,4.8 \mathrm{~Hz}, 1 \mathrm{H})$. MS: $449\left(\mathrm{MH}^{+}\right)$. HRMS (MH^{+}) calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}, 449.1875$; found, 449.1892.

1-\{3-[(1S)-Amino-3-methylbutyl]-2-pyridinyl\}-4-[3-(2,4-dichlo-rophenyl)-propionyl]piperazine Trifluoroacetate (S-20a). This compound was synthesized using the same method for $R-\mathbf{2 0}$ a from S-tert-butanesulfinamide. Light yellow foam, HPLC purity: 92\% $(220 \mathrm{~nm})$ and $96 \%(254 \mathrm{~nm}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): 0.95(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.82$ (m, 1H), 1.82-1.93 (m, 1H), $2.76(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.85-2.96$ $(\mathrm{m}, 4 \mathrm{H}), 3.00-3.13(\mathrm{~m}, 4 \mathrm{H}), 3.55-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.84(\mathrm{~m}, 3 \mathrm{H})$, $4.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.38(\mathrm{~m}$, $3 \mathrm{H}), 7.44(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=1.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.39$ (dd, $J=1.8,4.8 \mathrm{~Hz}, 1 \mathrm{H})$. MS: $449\left(\mathrm{MH}^{+}\right)$.

1-\{3-[(1R)-1-Amino-3-methylbutyl]-2-pyridinyl\}-4-[2-methyl-3-(2,4-dichlorophenyl)propionyl]piperazine Trifluoroacetate (R 20b). This compound was synthesized from $R-19 a$ and 2-methyl-3-(2,4-dichlorophenyl)propionic acid using a procedure similar to that for R-20a. Light yellow foam; HPLC purity: 97\% (220 and 254 nm). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): 0.94 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$), 1.01 (d, J $=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.19$ and $1.20(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.50(\mathrm{~m}$, $1 \mathrm{H}), 1.67-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.76(\mathrm{~m}, 1 \mathrm{H})$, 2.80-3.08 (m, 5H), 3.32-3.46 (m, 2H), 3.52-3.88 (m, 4H), 4.81 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.89$ (m, 1H), 8.39 (dd, $J=1.8,4.8 \mathrm{~Hz}, 1 \mathrm{H})$. MS: $463\left(\mathrm{MH}^{+}\right)$.

1-\{3-[(1R)-1-Amino-3-methylbutyl]-6-methyl-2-pyridinyl\}-4-[2R-methyl-3-(2,4-dichlorophenyl)propionyl]piperazine Trifluoroacetate (R-21). This compound was synthesized from $R-19 \mathrm{~b}$ and $2 R$-methyl-3-(2,4-dichlorophenyl)propionic acid using a procedure similar to that for R-20a. Light yellow foam; HPLC purity: 100% (220 and 254 nm). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.47$ (m, $1 \mathrm{H}), 1.65-1.88(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.78-3.04$ $(\mathrm{m}, 6 \mathrm{H}), 3.32-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.80(\mathrm{~m}, 4 \mathrm{H}), 4.75(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J$ $=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{MS}: 477\left(\mathrm{MH}^{+}\right) . \mathrm{HRMS}$ $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}, 477.2188$; found, 477.2165.
N-((1R)-[2-\{4-[2R-Methyl-3-(2,4-dichlorophenyl)propionyl]-1-piperazinyl\}-3-pyridinyl]-3-methylbutyl)-2-aminoacetamide Mesylate Trifluoroacetate ($\boldsymbol{R}-\mathbf{2 2}$). This compound was synthesized from $R-\mathbf{2 0} \mathbf{b}$ using a procedure similar to that for $\mathbf{1 1}$. White solid; HPLC purity: $99 \%\left(220 \mathrm{~nm}\right.$) and 98% (254 nm). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): 0.94(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.18$ and $1.20(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.66(\mathrm{~m}$, $2 H), 2.42-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.74-3.14(\mathrm{~m}, 5 \mathrm{H})$, $3.20-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.86(\mathrm{~m}, 7 \mathrm{H}), 5.36-5.45(\mathrm{~m}, 1 \mathrm{H})$, 7.12-7.19 (m, 1H), 7.23-7.26 (m, 2H), 7.42 and $7.46(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.72-7.78(\mathrm{~m}, 1 \mathrm{H}), 8.17-8.22(\mathrm{~m}, 1 \mathrm{H})$. MS: $520(\mathrm{MH}+)$.
N-((1S)-[2-\{4-[2R-Methyl-3-(2,4-dichlorophenyl)propionyl]-1-piperazinyl\}-3-pyridinyl]-3-methylbutyl)-2-aminoacetamide Trifluoroacetate ($\boldsymbol{S}-\mathbf{2 2}$). This compound was synthesized from S-20 using a procedure similar to that for 11. Light yellow foam; HPLC purity: 100% (220 and 254 nm). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): 0.94 (d, $J=$ $6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.18$ and $1.20(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.34-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.66(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.54(\mathrm{~m}, 1 \mathrm{H})$, $2.60-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.74-3.14(\mathrm{~m}, 5 \mathrm{H}), 3.20-3.42(\mathrm{~m}, 2 \mathrm{H})$, $3.52-3.86(\mathrm{~m}, 7 \mathrm{H}), 5.36-5.45(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.19(\mathrm{~m}, 1 \mathrm{H})$, $7.23-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.42$ and $7.46(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.78$ $(\mathrm{m}, 1 \mathrm{H}), 8.17-8.22(\mathrm{~m}, 1 \mathrm{H})$. MS: $520\left(\mathrm{MH}^{+}\right)$. HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}, 520.2246$; found, 520.2236 .
N-((1R)-[2-\{4-[2R-Methyl-3-(2,4-dichlorophenyl)propionyl]-1-piperazinyl\}-6-methyl-3-pyridinyl]-3-methylbutyl)-3-(dimethylamino)propionamide ($\boldsymbol{R}-\mathbf{2 3}$). This compound was synthesized from $R-\mathbf{2 1}$ using a procedure similar to that for $\mathbf{1 2 b}$. White solid; HPLC purity: $96.1 \%(220 \mathrm{~nm})$ and $96.5(254 \mathrm{~nm}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.17$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H}), 2.42$ $(\mathrm{s}, 3 \mathrm{H}), 2.43(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{~m}, 2 \mathrm{H})$, 3.03 (dd, $J=8.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=7.0,14.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.22(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~m}$, $1 \mathrm{H}), 5.28(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=2.0,8.5$
$\mathrm{Hz}, 1 \mathrm{H}), 7.19$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (m, 2H), 8.60 (brs, 1H). MS: $576\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Supporting Information Available: Synthetic procedure for the preparation of compound $\mathbf{6 c}$, analytic data of key compounds, and description of pharmacokinetic studies and protocol for the murine cachexia model. This material is available free of charge via the Internet at http:/pubs.acs.org.

References

(1) Gordon, J. N.; Green, S. R.; Goggin, P. M. Cancer cachexia. QJM 2005, 98, 779-788.
(2) Bossola, M.; Pacelli, F.; Tortorelli, A.; Doglietto, G. B. Cancer cachexia: it's time for more clinical trials. Ann. Surg. Oncol. 2007, 14, 276-285.
(3) Osei-Hyiaman, D. Endocannabinoid system in cancer cachexia. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 443-448.
(4) Akamizu, T.; Kangawa, K. Emerging results of anticatabolic therapy with ghrelin. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 278283.
(5) Deboer, M. D. Melanocortin interventions in cachexia: how soon from bench to bedside. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 457462.
(6) Ballesteros, J. A.; Shi, L.; Javitch, J. A. Structural mimicry in G-protein-coupled receptors: Implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsinlike receptors. Mol. Pharmacol. 2001, 60, 1-19.
(7) Goodfellow, V. S.; Saunders, J. The melanocortin system and its role in obesity and cachexia. Curr. Top. Med. Chem. 2003, 3, 855-883.
(8) Wilczynski, A. M.; Joseph, C. G.; Haskell-Luevano, C. Current trends in the structure-activity relationship studies of the endogenous agoutirelated protein (AGRP) melanocortin receptor antagonist. Med. Res. Rev. 2005, 25, 545-556.
(9) Cone, R. D. The central melanocortin system and energy homeostasis. Trends Endocrinol. Metab. 1999, 10, 211-216.
(10) Tao, Y. X.; Segaloff, D. L. Functional analyses of melanocortin-4 receptor mutations identified from patients with binge eating disorder and nonobese or obese subjects. J. Clin. Endocrinol. Metab. 2005, 90, 5632-5638.
(11) MacKenzie, R. G. Obesity-associated mutations in the human mel-anocortin-4 receptor gene. Peptides 2006, 27, 395-403.
(12) Boyce, R. S.; Duhl, D. M. Melanocortin-4 receptor agonists for the treatment of obesity. Curr. Opin. Investig. Drugs 2004, 5, 1063-1071.
(13) Foster, A. C.; Joppa, M.; Markison, S.; Gogas, K. R.; Fleck, B. A. Body weight regulation by selective MC4 receptor agonists and antagonists. Ann. N.Y. Acad. Sci. 2003, 994, 103-110.
(14) DeBoer, M. D.; Marks, D. L. Therapy insight: Use of melanocortin antagonists in the treatment of cachexia in chronic disease. Nat. Clin. Pract. Endocrinol. Metab. 2006, 2, 459-466.
(15) Li, S. J.; Varga, K.; Archer, P.; Hruby, V. J.; Sharma, S. D. Melanocortin antagonists define two distinct pathways of cardiovascular control by alpha- and gamma-melanocyte-stimulating hormones. J. Neurosci. 1996, 16, 5182-5188.
(16) Wisse, B. E.; Frayo, R. S.; Schwartz, M. W.; Cummings, D. E. Reversal of cancer anorexia by blockade of central melanocortin receptors in rats. Endocrinology 2001, 142, 3292-3301.
(17) Marks, D. L.; Butler, A. A.; Turner, R.; Brookhart, G.; Cone, R. D. Differential role of melanocortin receptor subtypes in cachexia. Endocrinology 2003, 144, 1513-1523.
(18) Joppa, M. A.; Gogas, K. R.; Foster, A. C.; Markison, S. Central infusion of the melanocortin receptor antagonist agouti-related peptide (AgRP(83-132)) prevents cachexia-related symptoms induced by radiation and colon-26 tumors in mice. Peptides 2007, 28, 636-642.
(19) Foster, A. C.; Chen, C. Melanocortin-4 receptor antagonists as potential therapeutics in the treatment of cachexia. Curr. Top. Med. Chem. 2007, 7, 1131-1136.
(20) Marks, D. L.; Cone, R. D. The role of the melanocortin-3 receptor in cachexia. Ann. N.Y. Acad. Sci. 2003, 994, 258-266.
(21) Vos, T. J.; Caracoti, A.; Che, J. L.; Dai, M.; Farrer, C. A. Identification of 2-[2-[2-(5-bromo-2- methoxyphenyl)-ethyl]-3-fluorophenyl]-4,5-dihydro- 1 H -imidazole (ML00253764), a small molecule melanocortin 4 receptor antagonist that effectively reduces tumor-induced weight loss in a mouse model. J. Med. Chem. 2004, 47, 1602-1604.
(22) Nicholson, J. R.; Kohler, G.; Schaerer, F.; Senn, C.; Weyermann, P. Peripheral administration of a melanocortin 4-receptor inverse agonist prevents loss of lean body mass in tumor-bearing mice. J. Pharmacol. Exp. Ther. 2006, 317, 771-777.
(23) Tucci, F. C.; White, N. S.; Markison, S.; Joppa, M.; Tran, J. A. Potent and orally active nonpeptide antagonists of the human melanocortin-4 receptor based on a series of trans-2-disubstituted
cyclohexylpiperazines. Bioorg. Med. Chem. Lett. 2005, 15, 43894395.
(24) Markison, S.; Foster, A. C.; Chen, C.; Brookhart, G. B.; Hesse, A. The regulation of feeding and metabolic rate and the prevention of murine cancer cachexia with a small-molecule melanocortin-4 receptor antagonist. Endocrinology 2005, 146, 2766-2773.
(25) Foster, A. C.; Chen, C.; Markison, S.; Marks, D. L. MC4 receptor antagonists: A potential treatment for cachexia. IDrugs 2005, 8, 314319.
(26) Nozawa, D.; Okubo, T.; Ishii, T.; Kakinuma, H.; Chaki, S. Structure-activity relationships of novel piperazines as antagonists for the melanocortin-4 receptor. Bioorg. Med. Chem. 2007, 15, 19892005.
(27) Nozawa, D.; Okubo, T.; Ishii, T.; Takamori, K.; Chaki, S. Novel piperazines: Potent melanocortin-4 receptor antagonists with anxiolyticlike activity. Bioorg. Med. Chem. 2007, 15, 2375-2385.
(28) Vos, T. J.; Balani, S.; Blackburn, C.; Chau, R. W.; Danca, M. D. Identification and structure-activity relationships of a new series of melanocortin-4 receptor antagonists. Bioorg. Med. Chem. Lett. 2006, 16, 2302-2305.
(29) Poitout, L.; Brault, V.; Sackur, C.; Bernetiere, S.; Camara, J.; et al. Identification of a novel series of benzimidazoles as potent and selective antagonists of the human melanocortin-4 receptor. Bioorg. Med. Chem. Lett. 2007.
(30) Chen, C. W.; Tran, J. A.; Jiang, W.; Tucci, F. C.; Arellano, M. Propionylpiperazines as human melanocortin-4 receptor ligands. Bioorg. Med. Chem. Lett. 2006, 16, 4800-4803.
(31) Jiang, W.; Chen, C.; Marinkovic, D.; Tran, J. A.; Chen, C. W. Practical asymmetric synthesis of alpha-branched 2-piperazinylbenzylamines by 1,2-additions of organometallic reagents to N-tert-butanesulfinyl imines. J. Org. Chem. 2005, 70, 8924-8931.
(32) Jiang, W.; Tucci, F. C.; Chen, C. W.; Arellano, M.; Tran, J. A. Arylpropionylpiperazines as antagonists of the human melanocortin-4 receptor. Bioorg. Med. Chem. Lett. 2006, 16, 4674-4678.
(33) Tran, J. A.; Tucci, F. C.; Jiang, W.; Marinkovic, D.; Chen, C. W. Pyrrolidinones as orally bioavailable antagonists of the human melanocortin-4 receptor with anti-cachectic activity. Bioorg. Med. Chem. 2007, 15, 5166-5176.
(34) Kotake, T.; Hayashi, Y.; Rajesh, S.; Mukai, Y.; Takiguchi, Y. Design and synthesis of a new polymer-supported Evans-type oxazolidinone: An efficient chiral auxiliary in the solid-phase asymmetric alkylation reactions. Tetrahedron 2005, 61, 3819-3844.
(35) Numata, A.; Kondo, Y.; Sakamoto, T. General synthetic method for naphthyridines and their N -oxides containing isoquinolinic nitrogen. Synthesis 1999, 306, 311.
(36) Nickolls, S. A.; Cismowski, M. I.; Wang, X.; Wolff, M.; Conlon, P. J. Molecular determinants of melanocortin 4 receptor ligand binding and MC4/MC3 receptor selectivity. J. Pharmacol. Exp. Ther. 2003, 304, 1217-1227.
(37) Loscher, W.; Potschka, H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2005, 2, 86-98.
(38) Jiang, J.; Tucci, F. C.; Tran, J. A.; Fleck, B. A.; Wen, J. et al. Pyrrolidinones as potent functional antagonists of the human melano-cortin-4 receptor. Bioorg. Med. Chem. Lett. 2007, 17, 5610-5613.
(39) Konturek, S. J.; Konturek, J. W.; Pawlik, T.; Brzozowski, T. Brain-gut axis and its role in the control of food intake. J. Physiol. Pharmacol. 2004, 55, 137-154.
(40) Ferorelli, S.; Loiodice, F.; Tortorella, V.; Amoroso, R.; Bettoni, G. Isosteres of chiral clofibric acid analogs: synthesis, resolution, absolute configuration and HPLC detection of the optical purity. Farmaco 1999, 52, 367-374.
JM701137S

[^0]: * To whom correspondence should be addressed. Phone: 858-617-7634. Fax: 858-617-7602. E-mail: cchen@ neurocrine.com.
 ${ }^{\dagger}$ Current address: Department of Medicinal Chemistry, Tanabe Research Laboratories, U.S.A., Inc., 4540 Towne Centre Ct., San Diego, CA 92121.
 \# Department of Pediatrics, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239.
 ${ }^{\ddagger}$ Current address: Vertex Pharmaceuticals Inc., 11010 Torreyana Road, San Diego, CA 92121.
 ${ }^{a}$ Abbreviations: MC4R, type 4 melanocortin receptor; MSH, melanocytestimulating hormone; AgRP, agouti-related protein; cAMP, cyclic adenosine monophosphate; i.p., intraperitoneal; b/p, brain/plasma.

[^1]: ${ }^{a}$ Three animals were dosed intravenously at $5 \mathrm{mg} / \mathrm{kg}$ and orally at $10 \mathrm{mg} / \mathrm{kg}$; brain concentrations were taken from p.o. dosing. ${ }^{b}$ i.v. dose at $2.5 \mathrm{mg} / \mathrm{kg}$.

